Q	Working	Answer	Mark	Notes

1 (a)	$5 \times (-2)^2 - (-2)^3 (= 208)$	28	2	M1 A1	for correct expression or at least one of 20 or 5×4 or 8 or (+) 8
(b)		2 <i>p</i> (4 <i>p</i> – 1)	2	B2	B1 for $p(8p-2)$ or $2(4p^2-p)$ or $2p(4p-1)$ with two terms inside the bracket with one term correct.
(c)		$12t^2 - 8t$	2	B2	B1 for $12t^2$ or $-8t$
(d)	$5x^2 + 20x - 2x - 8$		2	M1	for 4 correct terms (ignoring signs) or 3 correct terms with correct signs. or $5x^2 + 18x +$ or $ + 18x - 8$
		$5x^2 + 18x - 8$		A1	
					Total 8 marks

2		$\frac{-(-21)\pm\sqrt{(-21)^2-4\times1\times20}}{2\times1}$ or $\left(x-\frac{21}{2}\right)^2 - \left(\frac{21}{2}\right)^2 + 20 = 0$		3	M1	If factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{21\pm\sqrt{441-80}}{2} \text{ or eg } \left(x-\frac{21}{2}\right)^2 - \frac{361}{4} = 0 \text{ oe}$
	(x-20)(x-1)	eg $\frac{21 \pm \sqrt{441 - 80}}{2}$ or $\frac{21 \pm \sqrt{361}}{2}$ or $\frac{21 \pm 19}{2}$ or $x = \pm \sqrt{\frac{361}{4}} + \frac{21}{2}$ oe			M1	dep on M1for correct factorisation,or a correct expression for <i>x</i> if completing the square.or a correct substitution into quadratic formula with some processing.
			1, 20		A1	for both correct values, dep on 1st M1 with no incorrect working.
						Total 3 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q	Working	Answer	Mark	Notes
3	eg. $10x + 35y = 85$ 10x + 6y = -2 with the operation of subtraction or $29y = 87$ or $6x + 21y = 51$ 35x + 21y = -7 with the operation of subtraction or $29x = -58$ or eg $5\left(\frac{17-7y}{2}\right) + 3y = -1$ or eg $5x + 3\left(\frac{17-2x}{7}\right) = -1$		4	M1 for correct method to eliminate one variable – multiplying one or both equations so the coefficient of x or y is the same in both, with the correct operation to eliminate one variable (condone one arithmetic error) or isolating x or y in one equation and substituting into the other (condone one arithmetic error).
				M1 dep 1st M1 Substitute found value into one equation or correct method to eliminate second unknown.
		x = -2 y = 3		A1 dep 1st M1 A1
				Total 4 marks

E.g. $x^2 + 4x - 2x - 8 (= x^2 + 2x - 8)$ or		3	M1	for multiplying out two brackets correctly with no more than one error
$x^2 - 2x + x - 2$ (= $x^2 - x - 2$)				
or $x^2 + 4x + x + 4 (= x^2 + 5x + 4)$				
E.g. x3 + 2x2 - 8x + x2 + 2x - 8 or x3 + 4x2 - 2x2 - 8x + x2 + 4x - 2x - 8			M1	for at least 3 terms correct out of a maximum of 6 terms
or				or for at least 4 terms correct out of a
$ \begin{array}{c} x3 - x2 - 2x + 4x2 - 4x - 8 \text{ or} \\ x3 - 2x2 + x2 - 2x + 4x2 - 8x + 4x - 8 \end{array} $				maximum of 8 terms
or				
x3 + 5x2 + 4x - 2x2 - 10x - 8 or x3 + 4x2 + x2 + 4x - 2x2 - 8x - 2x - 8				
	x3 + 3x2 - 6x - 8		A1	

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

5 a	e.g. $A + 5z = \frac{c}{y}$ oe or		2	M1	for a correct first step e.g. add 5 <i>z</i> to both sides
	Ay = c - 5yz oe				or multiply all terms by <i>y</i>
		c = y(A + 5z)		A1	oe
b		1	1	B1	
С	$(x \pm 3)(x \pm 8)$		2	M1	or for $(x \pm a)(x \pm b)$ where $ab = 24$ or $a + b = -11$
		(x-3)(x-8)		A1	
					Total 5 marks

6 (a)	81 <i>k</i> ⁸	2	B2	B1 for 81 or k^8 seen in their final
				answer.
(b)	$7m^4n^6$	2	B2	B1 for $7m^4$ or n^6 in a product with no other terms in <i>m</i> or <i>n</i>
				Total 4 marks

Practice Tests Set 17 – Paper 1H mark scheme	, performance data and suggested grade boundaries
	,

Q Working Answer Mark Notes	
-----------------------------	--

7	E.g. $\frac{3(2x+1)+4(x-2)}{12}$ or $\frac{3(2x+1)}{12} + \frac{4(x-2)}{12}$		3	M1	for expressing both fractions correctly with a common denominator. Allow as two separate fractions.
	$\frac{\text{E.g.}}{\frac{6x+3+4x-8}{12}}$			M1	for removing brackets correctly in a correct single fraction
		$\frac{10x-5}{12}$		A1	accept $\frac{5(2x-1)}{12}$
					Total 3 marks

8	e.g. $\frac{16}{5}$ and $\frac{11}{6}$ or $\frac{96}{30}$ and $\frac{55}{30}$		3	M1 for two correct improper fractions
	e.g. $\frac{16^8}{5} \times \frac{11}{6^3}$ or $\frac{176}{30}$ or $\frac{5280}{900}$ oe			M1 correct cancelling or multiplication of numerators and denominators without cancelling
	e.g. $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = 5\frac{26}{30} = 5\frac{13}{15}$ or $\frac{16^8}{5} \times \frac{11}{6^3} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{96}{30} \times \frac{55}{30} = \frac{5280}{900} = \frac{88}{15} = 5\frac{13}{15}$ NB: a student can show initially that $5\frac{13}{15} = \frac{88}{15}$ and they need to show that LHS $= \frac{88}{50}$	shown		A1 Dep on M2 for conclusion to $5\frac{13}{15}$ from correct working – either sight of the result of the multiplication e.g. $\frac{176}{30}$ must be seen and equated to $\frac{88}{15}$ or $5\frac{26}{30}$ or correct cancelling prior to the multiplication to $\frac{88}{15}$ NB: use of decimals scores no marks
	15			Total 3 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

9	$4e^{5}f^{3}$	2	B2	(B1 for 2 out of 3 terms correct in a 3 term product)
				Total 2 marks

Practice Tests Set 17 – Paper 1H mark schem	e, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes

10	eg $(2^3)^2 \times \sqrt[3]{(2^2)^6}$ or $(2^3)^2 \times (4)^{\frac{6}{3}}$ or $4^3 \times 4^2$ or 2^6 or 2^4 seen or $2^6 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$ or 64×16		3	M1 a correct first stage.
	$2^{6} \times (2^{12})^{\frac{1}{3}} \text{or } 1024 \text{or } 32^{2} \text{ or } 4^{5}$ or $2^{6} \times 2^{4}$			M1 dep on 1st M mark.
		2 ¹⁰		A1 dependent on first M1 isw if 2 ¹⁰ seen but then 10 given as answer.
				Total 3 marks

11	(a)	vertices at (-9, 6) (-9, 9) (-3, 9) (-6, 6)	Shape in correct position	2	B2	B1 for congruent shape in correct orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
	(b)	vertices at (7, 3) (10, 6) (13, 6) (13, 3)	Shape in correct position	1	B1	
	(c)		enlargement scale factor 2 centre (- 3, 3)	3	B1 B1 B1	for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc. SF 2, double, two times etc. (-3, 3) stated. Accept about, from etc. with no mention of line, or column vector.
						Total 6 marks

12	$\frac{5}{x+2} + \frac{3}{x(x+2)} (=2)$ or $\frac{5x}{x^2+2x} + \frac{3}{x^2+2x} (=2)$	5	M1	Factorising $x^2 + 2x$ in correct expression on LHS or for writing the two fractions over a common denominator.	
	$\frac{5x+3}{x(x+2)} = 2 \text{ or } \frac{5x+3}{x^2+2x} = 2$ or $5x+3 = 2x(x+2)$ oe or $5x+3 = 2x^2+4x$ oe		M1	Correct simplified single fraction = 2 or correct equation with no fractions.	
	$2x^2 - x - 3 (= 0)$		M1	Correct 3 term quadratic	
	(2x-3)(x+1) (=0) or $\frac{1\pm\sqrt{(-1)^2-4\times2\times(-3)}}{2\times2}$ or $\left(x-\frac{1}{4}\right)^2 - \frac{1}{16} - \frac{3}{2} = 0$ oe		M1ft	independent For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula on completing the square allow one sign error and some simplification – allow as far as eg $\frac{1\pm\sqrt{1+24}}{4} \text{ or eg}\left(x-\frac{1}{4}\right)^2 = \frac{25}{16} \text{ oe}$	

Mark

oe dep on M3

A1

Notes

Total 5 marks

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q

1.5 and -1

Q	Working	Answer	Mark	Notes

13	E.g. $(x-5)^2 - 5^2 (+40) \text{ or } (x-5)^2 - 25 (+40)$ $\left(x^2 + 2ax + a^2 (+b^2)\right) 2a = -10 \text{ or } a = -5$		2	M1	for a correct first step or for equating coefficients
		$(x-5)^2 + 15$		A1	accept $a = -5$, $b = 15$ SC B1 for $(-x+5)^2 + 15$ or $(5-x)^2 + 15$
					Total 5 marks

14	$(n^{-\frac{4}{5}}) = \frac{1}{16}$ or 0.0625 oe	$\operatorname{eg}\left(n^{-\frac{1}{5}}\right)^{4} = \left(\frac{1}{2}\right)^{4}$		4		for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4, or 5 or -1 in the power
	$(n=) 16^{\frac{5}{4}} \text{ or } 0.0625^{-\frac{5}{4}} \text{ oe}$ $(n=) 2^{5} \text{ or } \sqrt[4]{1048576} \text{ oe}$ $\text{or } \frac{1}{0.0625^{\frac{5}{4}}} \text{ or } \left(\frac{1}{16}\right)^{-\frac{5}{4}}$	eg $(n=)$ $\left(\frac{1}{2}\right)^{-5}$				for a correct expression for <i>n</i> (M1 for one correct algebraic stage eg $n^{-\frac{1}{5}} = \frac{1}{2}$)
			32		A1	
						Total 7 marks

Q	Working			Answer	· Mai	·k	Notes	
15	x = 4.57 and 100x = 457.57 or 10x = 45.757 and 1000x = 4575.7 or x = 0.57 and 100x = 57.57 or 10x = 5.757 and 1000x = 575.7		2		a whole numb eg $100x = 45''$ 10x = 45.757'' not shown the 1000x = 4575'' or	ber or termina 7.57 and x with inten en allow 10x 7.7 to at least d eg $x = 0.5$	ecimals that when ating decimal $eg 4$ = 4.57 or 10002 tion to subtract. (I = 45.757, 100x = 4 5sf) 57, 100x = 57.5	453 or 4530 etc x = 4575.7and f recurring dots 457.57, and
	E.g. $100x - x = 457.57 4.57 = 453$ $\frac{453}{99} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ or $1000x - 10x = 4575.7 45.757$ $= 4530 \text{ and } \frac{4530}{990} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ or $100x - x = 57.57 0.57 = 57$ $\frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$ $1000x - 10x = 575.7 5.757 = 570$ $\frac{570}{990} \text{ or } \frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$	Shown		A1	for completio	on to $\frac{151}{33}$ or 2	1 <u>19</u> 33	
								Total 2 marks
	1		L	I				- ovar 2 mar Ab

Q	Working A	Answer Mar	·k Notes	

16	e.g. $\binom{5}{3} - \binom{-2}{4}$ or $\binom{5}{3} + \binom{2}{-4}$		2	M1 or for $\begin{pmatrix} 7 \\ a \end{pmatrix}$ where $a \neq -1$ or $\begin{pmatrix} b \\ -1 \end{pmatrix}$ where $b \neq 7$
		$\begin{pmatrix} 7\\ -1 \end{pmatrix}$		A1
				Total 2 marks

17	$y \ge 1 \text{ oe}$ $x \le 3 \text{ oe}$ $y \le 3x - 2 \text{ oe}$	3	B1 B1 B1	Allow $1 \le y \le 7$ Allow $1 \le x \le 3$ Condone < and > in place of \le and \ge
				throughout. SC B1 if no marks awarded, recognition of lines $x = 3$ and $y = 1$. Allow incorrect inequality and condone use of equals signs eg $y < 1, x = 3$
				may be seen on diagram. Total 3 marks

Q	Working	Answer	Mark	Notes

18 a	$2^6 \times 3 \times 11^4$	2	B2	oe, accept 2 811 072
			B1	for $2^a \times 3^b \times 11^c$ or where two of <i>a</i> , <i>b</i> and <i>c</i> are correct
b	$2^9 \times 3^5 \times 11^8$	2	B2	cao
			B1	for $2^a \times 3^b \times 11^c$ or where two of <i>a</i> , <i>b</i> and <i>c</i> are correct or 2.666×10 ¹³ or an equivalent expression for e.g. $2^2 \times 2^7 \times 3^5 \times 11^3 \times 11^5$
				Total 4 marks

19	$y(6y+5) - 2y^2 = 6$	$x\left(\frac{x-5}{6}\right) - 2\left(\frac{x-5}{6}\right)^2 = 6$		5	M1	for substitution of linear equation into quadratic or multiplying linear equation by y e.g. $xy - 6y^2 = 5y$ and intention to subtract the two equations
	E.g. $4y^2 + 5y - 6 (= 0)$ oe	E.g. $4x^2 - 10x - 266 \ (= 0) \ \text{oe}$			A1	(dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$
	$4y^2 + 5y = 6$	$4x^2 - 10x = 266$				allow $ax^2 + bx = c$
	E.g. $(4y-3)(y+2) (= 0)$	E.g. $(2x - 19)(x + 7) (= 0)$			M1	(dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some
						simplification – allow as far as $\frac{-5 \pm \sqrt{25 + 96}}{8}$
		$4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266 \text{ oe}$				or $\frac{5 \pm \sqrt{25 + 1064}}{4}$
	$(y=) \frac{3}{4}$ and $(y=) -2$	$(x=) \frac{19}{2}$ and $(x=) -7$			A1	Dep on first M1 for having two correct x values or two correct y values
			$x = \frac{19}{2}, y = \frac{3}{4}$ $x = -7, y = -2$		A1	Dep on first M1 Must be paired and labelled correctly
						Total 5 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q	Working	Answer	Mark	Notes		
20	$(4^{k+3} =)(2^2)^{k+3}$ oe or $(16 =)2^4$	4	M1	for $(2^2)^{k+3}$ oe or 2^4 or		
	$(16=)4^2 \text{ or } (2^k =) \left(4^{\frac{1}{2}}\right)^k \text{ oe }$			4^2 or $\left(4^{\frac{1}{2}}\right)^k$ oe or		
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $\left(16^{\frac{1}{4}}\right)^k$ oe		
	$(4^{k+3} =)(2^2)^{k+3}$ oe and $(16 =)2^4$		M1	for $(2^2)^{k+3}$ oe and 2^4 or		
	$(16=)4^2$ and $(2^k=)(4^{\frac{1}{2}})^k$ oe			4^2 and $\left(4^{\frac{1}{2}}\right)^k$ oe or		
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $\left(16^{\frac{1}{4}}\right)^k$ oe		
	E.g. $2k + 6 = 4 + k$ or		M1	for a correct linear equation in <i>k</i>		
	$k+3 = 2 + \frac{1}{2}k$ or					
	$\frac{1}{2}(k+3) = 1 + \frac{1}{4}k$					
		-2	A1	dep on at least M2		
				Total 9 marks		

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes

21	$\left(\frac{-1+2}{2},\frac{5+10}{2}\right)$ or (0.5, 7.5) oe		5	M1	
	$\frac{10-5}{2-(-1)} \left(=\frac{5}{3}\right)$ oe			M1	
	$m \times \frac{5}{3} = -1$ or $m = -\frac{3}{5}$ or			M1	ft their gradient for use of $m_1 \times m_2 = -1$
	$'7.5' = '-\frac{3}{5}' \times '0.5' + c$ or			M1	ft dep on first M1 and third M1
	c = 7.8 oe or				
	$y - 7.5' = -\frac{3}{5}(x - 0.5)$				
		5y + 3x = 39		A1	oe where p , q and r must be integers
					Total 5 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

				Edexcel a	averages:	scores of o	candidates	s who achi	eved grade):		
	Mean	Max										
Qn	score	score	Mean %	ALL	9	8	7	6	5	4	3	U
1	7.34	8	92	7.34	7.93	7.71	7.69	7.25	6.42	4.52	2.46	0.72
2	2.49	3	83	2.49	2.91	2.80	2.69	2.07	1.65	0.62	0.18	0.00
3	3.40	4	85	3.40	3.96	3.90	3.53	3.26	2.31	0.92	0.09	0.00
4	2.47	3	82	2.47	2.95	2.84	2.61	2.09	1.47	0.96	0.13	0.00
5	4.02	5	80	4.02	4.86	4.56	4.08	3.45	2.70	1.42	0.61	0.14
6	3.27	4	82	3.27	3.79	3.57	3.25	2.78	2.08	1.62	0.77	0.14
7	2.39	3	80	2.39	2.86	2.57	2.39	1.95	1.68	1.15	0.22	0.00
8	2.27	3	76	2.27	2.63	2.46	2.32	2.16	1.45	1.24	0.87	0.29
9	1.60	2	80	1.60	1.94	1.81	1.52	1.31	0.85	0.58	0.22	0.00
10	2.29	3	76	2.29	2.94	2.68	1.99	1.57	1.08	0.27	0.23	0.29
11	3.98	6	66	3.98	5.30	4.54	3.34	2.83	2.27	1.46	0.60	0.43
12	3.12	5	62	3.12	4.55	3.62	2.60	1.55	1.00	0.15	0.09	0.00
13	1.30	2	65	1.30	1.90	1.57	0.99	0.67	0.20	0.13	0.00	0.00
14	2.51	4	63	2.51	3.75	2.66	1.93	1.45	0.74	0.31	0.18	0.14
15	1.16	2	58	1.16	1.65	1.32	0.93	0.50	0.35	0.07	0.00	0.00
16	1.20	2	60	1.20	1.86	1.28	0.91	0.57	0.32	0.11	0.04	0.00
17	1.82	3	61	1.82	2.68	2.14	1.36	0.64	0.39	0.13	0.05	0.00
18	2.35	4	59	2.35	3.39	2.39	1.79	1.33	0.78	0.51	0.00	0.00
19	2.94	5	59	2.94	4.56	3.49	2.06	1.15	0.61	0.15	0.00	0.29
20	2.33	4	58	2.33	3.79	2.56	1.20	0.96	0.22	0.11	0.00	0.00
21	2.20	5	44	2.20	3.97	2.19	0.84	0.57	0.22	0.29	0.22	0.00
	56.45	80	71	56.45	74.17	62.66	50.02	40.11	28.79	16.72	6.96	2.44

Q	Working	Answer	Mark	Notes

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	68	56	45	34	23	12	5